高可靠高边驱动助力汽车应用

时间:2024-01-29    浏览:140

三大负载类型中,最单纯的是阻性负载(如 PTC、座椅加热)。其负载特性比较稳定,考验高边驱动的导通内阻。高边驱动器的内阻越低,它所能带的阻性负载越大、额定电流越高。


容性负载在启动时会产生较大的浪涌电流。以卤素灯负载为例,通常车灯负载特性和浪涌电流由 IDC,IINRUSH 和 tLAMP−ON 三个参数描述。IDC 定义了稳定状态时的消耗电流,IINRUSH 是初始浪涌电流,同时,时间常数 tLAMP−ON 描述了达到稳定状态的转变时间。一般认为 IINRUSH 是 IDC 的 10 倍。当驱动电流降至小于 IINRUSH 一半时,车灯达到打开状态,这段时间定义为 tLAMP−ON。如果高边驱动存在因为浪涌电流导致的短路保护和开启重试,则 tLAMP−ON 定义为从开始到最后一次开启重试所需时间。在车灯设计中应该确保 tLAMP−ON 不超过 30ms[1]。浪涌电流主要受灯丝温度影响,最差情况基本发生在 -40℃,典型情况是在环境温度(+25℃)。而实际工作电流往往远小于浪涌电流,所以针对容性负载的限流保护设计是一个挑战。


最复杂的是感性负载。汽车电子系统中常见感性负载主要有:变速箱控制模块(TCU)应用中的执行器,如电机、电磁阀等;车身控制模块(BCM)中的执行器,如雨刮、继电器、风机、水泵、油泵等,同样表现为感性特点。高边驱动在应对感性负载关断时,需要通过续流保护维持感性负载电流流向不变,但如果负载两端的电压极性突然翻转,高边驱动输出端将瞬间产生数百伏负电压。由于关断负压幅度大小与感性负载中退磁能量成正相关,高边驱动内部的 MOSFET DS 端将承受巨大反向电压,如果未采取任何钳位措施,MOSFET 将面临被损毁的风险[2]。与此同时,瞬间关断产生的退磁耗散能量是否在高压侧器件承受范围内,也决定着退磁关断是否会烧毁高边驱动。


那么为了应对这些负载驱动时的挑战,一颗好的高边驱动芯片需要具备哪些特点呢?通常,汽车应用除了正常的开关和驱动能力,还主要从保护功能和负载诊断进行评估。典型评估项目如表 1 所示。