电驱逆变器SiC功率模块芯片级热分析

时间:2024-07-15    浏览:95

电驱逆变器是业界公认的混动车和电动车的核心部件,从最初的几十千瓦,到现在的数百千瓦,它们对额定功率的要求越来越高。中高功率逆变器要求功率模块的标称电流高达数百至数千安培。只能通过并联多个裸片,有时并联多个子模块(在同一个封装基板上集成多个裸片),甚至多个功率模块,才能达到如此高的电流[1]。


在这种情况下,重量、尺寸和成本是制约功率模块设计的主要因素。最初使用IGBT设计的三相半桥逆变器解决方案已经非常普及,目前采用性能更高的碳化硅功率模块设计逆变器是一种新趋势。功率模块设计通常是热性能和电性能之间的权衡与折衷。设计良好的功率模块,能够在上下桥臂开关管之间以及开关管内部裸片之间均衡分配电流,前提是它们的静态参数差异不大。此外,良好的电路布局意味着,只有裸片之间互热效应合理,热应力才能分布均衡[1]。


本文介绍一个电驱逆变器模块连续工作测温系统的开发步骤和过程,并分析了影响功率模块使用寿命的并联碳化硅裸片之间的热失衡现象。电路布局引起的寄生元件和静态参数(例如,通态电阻和阈值电压)是引起并联器件热失衡的主要因素。论文[2]中详细论述了电路布局的不对称性,它会影响栅极到源极环路,引起串联电感,并导致驱动环路不匹配,从而严重影响并联器件的动态性能。


论文[3]中描述了如何通过红外热像仪图像分析功率模块在稳态下的热失衡问题。虽然通态电阻分布范围是一个重要的静态参数,但是电阻与温度的关系将会补偿通态电阻的分布范围。事实上,芯片升温将会减轻漏源通态电阻自然分布范围引起的热失衡现象。


本文将重点讨论另一个关键参数:阈值电压(Vth),它对开关的导通和关断性能影响很大,从而影响功率开关的能量损耗。两个并联芯片之间的阈压Vth差会导致能耗失衡,最终影响整个功率模块的性能。论文[4]详细地描述了 Vth 对开关能耗的影响,证明当Vth 升高 500mV时,导通状态耗散功率升幅可能高达 40%。


根据这个论据,我们认为有必要建立一个能够在正常工作条件下直接测量开关温度的测温系统,以评估和表征功率模块内不同裸片的散热性能。不仅在生产线上设法最大限度缩窄工艺的参数分布范围,包括阈压Vth的分布范围,还需要根据模块内距离最近的两个芯片之间的微小差异,在模块组装层面采取进一步的改善行动。我们利用这一概念组装了两个不同的功率模块:第一个模块叫做 GAP1,内部裸片阈压Vth的最大分布范围是250mV(围绕平均值+/- 125mV),第二个模块叫做GAP2,Vth的最大变化范围是 500mV(围绕平均值+/-250mV)。采用两个不同的开关频率进行测试:电驱逆变器的典型工作频率8kHz和12kHz。众所周知,耗散功率的增加与开关频率成正比。