轻松了解功率MOSFET的雪崩效应
在关断状态下,功率MOSFET的体二极管结构的设计是为了阻断最小漏极-源极电压值。MOSFET体二极管的击穿或雪崩表明反向偏置体二极管两端的电场使得漏极和源极端子之间有大量电流流动。典型的阻断状态漏电流在几十皮安到几百纳安的数量级。
根据电路条件不同,在雪崩、MOSFET漏极或源极中,电流范围可从微安到数百安。 额定击穿电压,也可称之为“BV”,通常是在给定温度范围(通常是整个工作结温范围)内定义的MOSFET器件的最小阻断电压(例如30V)。数据表中的BVdss值是在低雪崩电流(通常为250μA或1mA)和结温=25°C时测得的器件雪崩电压。数据表中通常也提供结温范围内的BVdss数据或BVdss温度系数。值得注意的是,功率MOSFET雪崩电压是结温和雪崩电流的强函数。
图1显示了三个温度下的BVdss值作为额定电压为30V的器件的雪崩电流的函数。下面的表1列出了不同功率MOSFET BV额定值的典型雪崩电压范围——在高雪崩电流(安培)和升高的结温(处于或接近最大额定结温)下测量。
MOSFET在雪崩条件下工作的的功率函数(雪崩电压*雪崩电流)可以具有任何形式。本文介绍了一个特定的雪崩功率函数,它构成了功率MOSFET数据表中雪崩额定值的基础。MOSFET数据表通常在同义术语“UIS”或“UIL”下指定雪崩额定值,“UIS”和“UIL”分别指“非钳位电感开关”和“非钳位电感负载”。也就是说,当驱动未钳位负载的MOSFET关断时,功率MOSFET雪崩额定值适用于由此产生的Vds和Id(这些术语假定为n沟道MOSFET,否则Vsd和Is适用于p沟道 MOSFET)波形。图2显示了基础电路,图3显示了器件波形。接着,我们继续假设一个n沟道MOSFET并定义如下术语:
. Iav=雪崩电流
. Ipk=最大雪崩电流=MOSFET关断时的值
. Ipk (fail)=MOSFET失效时的最大雪崩电流(漏极到源极到栅极短路)
. Jpk,Jpk(fail):Ipk值与裸芯有源面积成比例,单位为A/面积2
. 裸芯有源面积:包含有源MOSFET结构的MOSFET裸芯面积;占总裸芯面积的某个百分比
. Vav=雪崩电压 (Vds)。Vav在雪崩期间通常不是恒定的(因为Iav和Tj会发生变化);Vav通常是在雪崩期间测得的平均Vds幅度
. tav=雪崩时间,通常定义为Iav从Ipk降至零所需的时间;即电感中存储的能量减少到零的时间。
. Tj=MOSFFET结温,通常简称为裸芯表面或附近的最高温度。
. Tj (intrinsic)=器件结变成导体时的MOSFET结温(热产生的载流子淹没掺杂载流子);在此温度下,MOSFET通常会失效,并具有漏极到源极到栅极永久短路的特性。能量(E,或有时称为Eav或Eas)=雪崩功率函数的时间积分;对于雪崩中的纯三角函数,E=1/2*Vav*Ipk*tav